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3D Printing Technologies ïScale, Speed, and Accuracy
Light Based Methods

Å2PP ïTwo-photon polymerization
ÅSLS ïSelective laser sintering

ÅPµSL ïProjection microstereolithography

ÅCLIP ïContinuous liquid interphase printing

ÅCAL ïComputed axial lithography

Other methods
ÅEBID ïElectron beam induced deposition
ÅEHDP ïElectrohydrodynamic printing
ÅFFF ïFused filament fabrication
Å IJ ïInkjet
ÅDIW ïDirect ink writing
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3D printing techniques compared using inverse voxel size and 

voxel print rate 

Hahn, et al., Adv. Funct. Mater. (2020) 
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https:// 3dprintingspeed.aph.kit.edu/

Goal 1: Faster ï projection printing
ÅX ï Somers et al, Light, 2021
ÅṐ - Larger DMD and change in system 

magnification

Goal 2: Feature size smaller
ÅUse photo-chemical pathways

Goal 3: Improving printing 
accuracy/reproducibility through 
machine learning
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Current research at Purdue
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Projection printing: 

Digital micro-mirror device 
(DMD) as a dynamic 2D 
pattern generator as well as a 
grating for dispersion

ÅLayer-by layer printing 
to improve the printing 
speed

ÅSpatiotemporal 
focusing to project the 
image inside a resin 

ÅDiffraction order along 
DMD normal

Å2 orders faster than 
typical scanning 
method
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Schematic of spatiotemporal 

focusing/imaging

Spatiotemporal Focusing/Imaging for Projection Printing 

Somers et. al., Light Sci. Appl. (2021)

Typical Two-photon 

polymerization: 

scanning the fs laser 

pulses in 3D space in a 

resin to form a 3D object



Rapid Projection Printing in Action
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5 µm

50 µm

96 frames per 3D structure



Typical convolutional neural network -
CNN requires a large number of training 
data (and computational resource for 
image analyses)
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ML - Bayesian Optimization
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Bayesian optimization

ÅCostly objective function needs to 
be optimized

ÅProbabilistic surrogate function 
predicts objective function results

ÅAcquisition function finds best 
next experiment



Bayesian Optimization

Generate patterns of width, height, rotation, and warp, with random input parameters. Special 
geometry at the edge (warp) and corners are needed to overcome inhibition processes

     and then print patterns

Analyze image to obtain dimensions (e.g., width, height) and errors in shape (pixels) and 
ñHausdorff distanceò ï the largest difference at key location(s), usually at corners due to 
oxygen depletion

Target Pattern Print Measure/Compare
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Bayesian Optimization ï contôd

2. Train the Gaussian Process (GP) 
regression model

3a. Perform Bayesian Optimization 
(BO) to determine the most 
desirable input parameters for 
next training data set to 
improve the model 

3b. Use the GP model to predict 
parameters for target shape

4. Print and measure target 
parameters

      Repeat until the printed results 
achieve target shapes. 
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A Video for Printing

A total of several hundreds data points (only) were used for each shape

10 µm 



Images of Optimization Results
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The final results match with the desired shapes within the measurement resolution

Green: under-printing; Cyan: overprinting Johnson et al., Light, in print



Test case results
ÅTested the framework on circles, squares, and triangles with target dimensions of 

6.75 µm, 13.5 µm, and 27 µm

ÅPerimeter error was reduced from ~0.5-1 µm down to <116 nm for all nine cases
ÅOptimized each in 4 trials (5 experiments) with only 339 to 820 training data points
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6.75 µm

2 µm

13.5 µm

5 µm

27 µm

10 µm
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Error
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Error
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Pattern
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Error
0.712 µm 0.038 µm

0.858 µm 0.049 µm

0.647 µm 0.051 µm

0.928 µm 0.099 µm

0.787 µm 0.038 µm

0.627 µm 0.116 µm

0.765 µm 0.085 µm

0.623 µm 0.056 µm

0.494 µm 0.054 µm



Evaluation/Extension of framework

ÅFramework achieves errors near measurement 
accuracy for shapes down to 2 µm

ÅOther geometries can be optimized to sub-100 nm 
perimeter errors in 3-4 trials

ÅWith 4-5 times less data framework was 2-5 times 
more accurate than CNN
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2 µm

0.539 µm 0.049 µm

2 µm

0.414 µm 0.064 µm

Initial 
Error

Optimized 
Pattern

Optimized 
Error

Target
Shape

Target 
Shape

Initial 
Error

Optimal 
Pattern

Optimized 
Error

2 µm 0.225 µm 0.065 µm

2 µm

3 µm 0.320 µm 0.049 µm

2 µm

4 µm 0.340 µm 0.067 µm

2 µm

Results for other shapes

Results for smaller shapes



Comparison with CNN 
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The error is about 2-5 times greater using 4-5 more training data. 
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