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3D Printing Technologies i Scale, Speed, and Accuracy

Light Based Methods
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Goal 2: Feature size smaller
A Use photo-chemical pathways

Goal 3: Improving printing
accuracy/reproducibility through
machine learning
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3D printing techniques compared using inverse voxel size and

voxel print rate

Hahn, et al., Adv. Funct. Mater. (2020)
https:// 3dprintingspeedaph.kit.edu/



Spatiotemporal Focusing/Imaging for Projection Printing

Typical Two-photon Projection printing:
polymerization:

Digital micro-mirror device

scanning the fs laser (DMD) as a dynamic 2D
pulses in 3D space in a pattern generator as well as a
resin to form a 3D object grating for dispersion

A Layer-by layer printing
to improve the printing
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A 2 orders faster than
typical scanning
method

Schematic of spatiotemporal
focusing/imaging

3D printed bull structure
S. Kawata, et al., Nature (2001)

Somers et. al., Light Sci. Appl. (2021)



Rapid Projection Printing in Action

96 frames per 3D structure



ML - Bayesian Optimization

Typical convolutional neural network -
CNN requires a large number of training
data (and computational resource for
image analyses)
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Bayesian optimization

A Costly objective function needs to

be optimized

A Probabilistic surrogate function
predicts objective function results

A Acquisition function finds best

next experiment

Objective function

PMPL

Most informative
parameters

Acquisition function

Expected
Improvement
\ Probability
distribution
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Training
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Bayesian Optimization

Generate patterns of width, height, rotation, and warp, with random input parameters. Special
geometry at the edge (warp) and corners are needed to overcome inhibition processes

Deflated radial warp

Inflated radial warp Convex corner warp Concave corner warp

[x,y] = [rP cos8,rP sin 0]

and then print patterns

Analyze image to obtain dimensions (e.g., width, height) and errors in shape (pixels) and
AHausdorffd i s t aintbhedargest difference at key location(s), usually at corners due to
oxygen depletion

Target Pattern Print Measure/Compare
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Bayesian OptimizationT cont 0 d

Train the Gaussian Process (GP)
regression model

Perform Bayesian Optimization

(BO) to determine the most
desirable input parameters for
next training data set to
Improve the model

Use the GP model to predict
parameters for target shape

Print and measure target
parameters

Repeat until the printed results
achieve target shapes.
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redict parameters
for model
improvement:
arg max {EI(x)}

a
rint predicted
parameters

Train Gaussian
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Predict parameters
for target shape:

arg min {puse ()}

b
Print predicted
parameters
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A Video for Printing

A total of several hundreds data points (only) were used for each shape



Images of Optimization Results

Initial Final

; Johnson et al., Light, in print
The final results match with the desired shapes within the measurement resolution




Test case results

A Tested the framework on circles, squares, and triangles with target dimensions of
6.75 um, 13.5 um, and 27 pm

A Perimeter error was reduced from ~0.5-1 pm down to <116 nm for all nine cases
A Optimized each in 4 trials (5 experiments) with only 339 to 820 training data points
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Evaluation/Extension of framework

A Framework achieves errors near measurement

accuracy for shapes down to 2 um

_ o Target Initial Optimal Optimized
A Other geometries can be optimized to sub-100 nm Shape Error Pattern Error

perimeter errors in 3-4 trials

A With 4-5 times less data framework was 2-5 times
more accurate than CNN

Target Initial Optimized  Optimized
Shape Error Pattern Error

Results for smaller shapes

Results for other shapes



Comparison with CNN
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The error is about 2-5 times greater using 4-5 more training data.
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