

Pixel-level 3D nanophotonic structures for multi-modality image sensors. Regular single-investigator grant, EECS-1807590

Euan McLeod, College of Optical Sciences, University of Arizona, Tucson, AZ. December 6 & 7, 2018

euanmc@optics.arizona.edu, https://wp.optics.arizona.edu/emcleod

Broad areas of research

- Soft Matter
 - Liquids
 - Polymers
 - Biological materials
 - Surface forces
 - Biochemical interactions
 - Material transport
- Nano-photonics
 - Resolution beyond $\lambda/2$
 - Optical sensing of nano-objects
 - Optical nanofabrication
 - Optical properties of subwavelength structures
- Systems of nanoparticles
 - Coordinated interaction of many components
 - Self assembly
 - Directed assembly
 - Stochastic interactions

Rayleigh regime:

Soft Nano-Photonic Systems Laboratory

Lensfree holographic microscopy

Environmental sensing

Field-portable

of diffraction patterns for ultralarge field of view imaging with sub-micron resolution: Light source

Computational reconstruction

Sparsity-promoting

Specialized algorithms for

reconstructing sparse

Z. Xiong, J. E. Melzer, J. Garan, and E. McLeod, Opt. Express, **26**, 25676- 25692 (2018).

Quantitative Large-Area Biosensing

Lensfree imaging of microfluidic chips:

E. McLeod, T. U. Dincer, M. Veli, Y. N. Ertas, C. Nguyen, W. Luo, A.

 $F_{drag} = 3\pi \eta dv$

Greenbaum, A. Feizi, and A. Ozcan, ACS Nano, 9 (3), 3265-3273 (2015).

Imaging bead-binding induced by a target analyte:

Optical positioning and linking 3D multi-material nanofabrication

Design through optimal positioning

OPCODE: Rapid

nanophotonic design

High-speed optical tweezers

Particles are lost from the trap once the Stokes' drag force exceeds the maximum optical force.

Scattering force

= Particle polarizability

- Long distance manipulation (0.1–1 mm)
- Particularly high nanoparticle optical trapping speeds
- Speeds competitive for nanofabrication

For nanoparticles:

- Stable trapping disappears at power levels >150-250 mW.
- Based on estimates of absorption cross sections of the nanoparticles, and heat transfer to the liquid, we attribute this to water vaporization and microbubble formation.

For microparticles:

 We attribute the upper limit to stage vibrations when run at high speed.

J. E. Melzer and E. McLeod, ACS Nano, **12** (3), 2440-2447 (2018).

Particle Diameter [nm]

Au Theory (scaled)

Pixel-level 3D nanophotonic structures for multi-modality image sensors. EECS-1807590

Period of performance: August 2018 – July 2021

(u,v)

(s,t)

- Nanophotonic structures can be used to generate functional pixels for angle and polarization sensitivity
- This can lead to smaller advanced imaging devices

Conventional light-field microscope: (also called plenoptic or integral imaging) Tube lens / Microlens Object Microscope objective plane

Pixel-level sensor augmentation for compact multi-modality

light-field imagers

OPAL: 3D multi-material nanoscale prototyping

E. McLeod and A. Ozcan, Rep. Prog. Phys., 79, 076001 (2016).